Extensions 1→N→G→Q→1 with N=C32 and Q=C4⋊Dic3

Direct product G=N×Q with N=C32 and Q=C4⋊Dic3
dρLabelID
C32×C4⋊Dic3144C3^2xC4:Dic3432,473

Semidirect products G=N:Q with N=C32 and Q=C4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C32⋊(C4⋊Dic3) = C62.D6φ: C4⋊Dic3/C22D6 ⊆ Aut C32144C3^2:(C4:Dic3)432,95
C322(C4⋊Dic3) = (C3×C6).9D12φ: C4⋊Dic3/C6D4 ⊆ Aut C32488-C3^2:2(C4:Dic3)432,587
C323(C4⋊Dic3) = C6.2PSU3(𝔽2)φ: C4⋊Dic3/C6Q8 ⊆ Aut C32488C3^2:3(C4:Dic3)432,593
C324(C4⋊Dic3) = C62.20D6φ: C4⋊Dic3/C2×C4S3 ⊆ Aut C32144C3^2:4(C4:Dic3)432,140
C325(C4⋊Dic3) = C62.30D6φ: C4⋊Dic3/C2×C4S3 ⊆ Aut C32144C3^2:5(C4:Dic3)432,188
C326(C4⋊Dic3) = C339(C4⋊C4)φ: C4⋊Dic3/C12C4 ⊆ Aut C32484C3^2:6(C4:Dic3)432,638
C327(C4⋊Dic3) = C62.80D6φ: C4⋊Dic3/C2×C6C22 ⊆ Aut C32144C3^2:7(C4:Dic3)432,452
C328(C4⋊Dic3) = C62.85D6φ: C4⋊Dic3/C2×C6C22 ⊆ Aut C3248C3^2:8(C4:Dic3)432,462
C329(C4⋊Dic3) = C3×Dic3⋊Dic3φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C3248C3^2:9(C4:Dic3)432,428
C3210(C4⋊Dic3) = C62.82D6φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C32144C3^2:10(C4:Dic3)432,454
C3211(C4⋊Dic3) = C3×C12⋊Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C32144C3^2:11(C4:Dic3)432,489
C3212(C4⋊Dic3) = C62.147D6φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C32432C3^2:12(C4:Dic3)432,505

Non-split extensions G=N.Q with N=C32 and Q=C4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C32.(C4⋊Dic3) = C36⋊C12φ: C4⋊Dic3/C2×C4S3 ⊆ Aut C32144C3^2.(C4:Dic3)432,146
C32.2(C4⋊Dic3) = Dic3⋊Dic9φ: C4⋊Dic3/C2×C6C22 ⊆ Aut C32144C3^2.2(C4:Dic3)432,90
C32.3(C4⋊Dic3) = C3×C4⋊Dic9φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C32144C3^2.3(C4:Dic3)432,130
C32.4(C4⋊Dic3) = C36⋊Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C32432C3^2.4(C4:Dic3)432,182

׿
×
𝔽